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Flow of a multiphase medium over a permeable surface of arbitrary shape with formation of sediment is con-
sidered. A differential equation for determining the sediment-layer thickness has been constructed.

During flow of a multiphase heterogeneous medium over a permeable surface, a continuous phase seeps
through a wall, whereas solid particles retained on the flow surface form a sediment layer. Under the conditions of
high shear stresses created by the flow of a separable medium and by mass forces, the particles retained on the surface
are carried away by the flow. Here the process of filtration occurs without formation of sediment; mathematical simu-
lation of this process was considered in [1, 2]. With the shear stress at the wall being insufficient, filtration occurs
with formation of sediment. This process is governed by two phenomena. When the carrying phase filters through a
permeable wall, solid particles are retained on the flow surface. The intensity of the increase in the layer thickness is
associated only with the rate of filtration; it is independent of the relationship between the densities of the phases, and,
therefore, may occur even at ρ1 = ρi, i = 2, θ

____
. On the other hand, at considerable relative velocities of the phases, the

medium will laminate, which occurs due to the difference between the densities of the phases and does not depend on
the presence of the continuous-phase filtration.

The characteristics of individual layers, including the sediment layer, are determined by the physicochemical
properties of the constituent phases, characteristic features of the hydrodynamics of the flow, and the intensity of mass
forces. The number and composition of disperse phases in individual layers will be different. Therefore, the values of
the rheological coefficients and the density of the medium as well as the coefficients of interphase interaction must be
determined separately for different layers.

The layer of the deposited mass represents a flux of particles in a state of a sufficiently dense packing capa-
ble of creating solid-like structures disintegrating on increase in the intensity of deformation. Even when the material
of the grains is undeformable, macrodeformation of the granular skeleton may occur due to the displacement of the
grains relative to each other. When considerable shear stresses appear, the sediment formed can flow according to its
rheological behavior. Therefore, the mass balance equation for the sediment layer must generally take into account
both the scatter of the values for the rate of deposition of individual fractions of a multiphase suspension and spread-
ing of the deposited mass.

To carry out mathematical simulation of the deposited mass, we will consider the latter as a two-phase mix-
ture of a granular solid phase with the liquid that fills the spaces between the grains. In the presence of contacts be-
tween dispersed particles, a multiphase mixture is called a contact disperse medium. Momentum transfer in it can
occur due to direct interaction between the particles, which is described by the reduced tensor of stresses τs. The equa-
tions of the momenta of the phases of a contact disperse mixture can be written in the form [3]

ρ1s (V1s∇ ) V1s = − α1s∇ Ps − F12
 s

 + ρ1sF , (1)

ρ2s (V2s∇ ) V2s = − α2s∇ Ps + ∇ τ2 + F12
 s

 + ρ2sF . (2)
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Equation (1) describes the motion of the liquid in the pores of the sediment and Eq. (2) describes macrodeformation
of the granular skeleton of the deposited mass. Assuming the smallness of the corresponding rates, the inertia terms
can be neglected here.

The force of viscous friction in the contact dispersed phase can be calculated as F12
s  = 4α1sα2sµ1Kd−2

×(V1s − V2s), where the coefficient K is determined proceeding from the adopted structure of the medium [3]. The di-
ameter of the particle is unambiguously calculated only for sedimentation of monodispersed particles. Otherwise, a
characteristic size of the pores is adopted instead. We note that if the inertia forces and external mass forces are in-
significant, Eq. (1) yields the law of filtration in an isotropic medium:

V1s − V2s = − 
d

2

4α2sµ1K
 ∇ Ps .

In order to describe the rheological behavior of a structuring medium, the most universal is the Bulkley–Her-
schel law:

τs = 2 




τ
√2I2

 + c√2I2  s−1


 e12 ,   τ s  > τ ;   e12 = 0 ,    τs  ≤ τ . (3)

Then, after simplifications with account for the slowness of motion, the mass and momentum conservation equations
of the contact disperse medium in an orthogonal coordinate system will take the form

∂ (H2H3ρisUis)
∂x1

 + 
∂ (H1H3ρisVis)

∂x2
 = 0 ,   i = 1, 2

___
 ; (4)

− f12
 s

 (U1s − U2s) + ρ1sF1 = 0 ; (5)

− 
α1s

H2
 
∂Ps

∂x2
 − f12

 s
 (V1s − V2s) + ρ1sF2 = 0 ; (6)
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 + f12

 s
 (U1s − U2s) + ρ2sF1 = 0 ; (7)

− 
α2s

H2
 
∂Ps

∂x2
 + f12

 s
 (V1s − V2s) + ρ2sF2 = 0 . (8)

These equations are to be solved together with the equations of motion of a multiphase suspension under the following
boundary conditions:

x2 = 0 :   Ps = Pv ,   U2s = 0 ; (9.1)

x2 = δs :   P = Ps ,   Ui = U1sδ1
i
 + U2s (1 − δ1

i ) ,   α1V1 = V1s ,   τ1 = τ ; (9.2)

x2 = h (x1) :   P = Pa ,   τ1 = 0 . (9.3)

The system of equations (4)–(8) on the assumption that τ s  > τ is integrated analytically. From Eqs. (5) and
(7), subject to the corresponding boundary condition, we find the longitudinal velocities of the motion of the deposited
mass and filtrate:
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U2s = H1 ∫ 
0

x2
H2

H1
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τ1 (δs) − τ

c
 + 

1

cH1
2
H3

 ∫ 
x2

δs
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1 ⁄ s

 dx2 ,   U1s = U2s + 
ρ1sF1

f12
 s  .

The velocity components of individual phases in the transverse direction can be found from the mass and momentum
conservation equations (4), (6), and (8). Subject to the corresponding boundary conditions, we obtain

V2s = − 
1

H1H3

 ∫ 
0

x2 ∂

∂x1

 (H2H3U2s) dx2 ,   V1s = V2s − 
α1s

f12
 s  
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0
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


 .

It is advisable to select the technique of determining the value of ∂Ps
 ⁄ ∂x2 in the latter equation after the mo-

tive forces of the filtration process have been analyzed. When filtration occurs due to the mass force, the pressure gra-
dient can be found from (6) and (8) in the form ∂Ps

 ⁄ ∂x2 = H2ρsF2. If the motive force of the filtration process is the
difference in the pressures between the regions located on different sides of the permeable barrier, the expressions for
the velocities U1s and V1s are substituted into Eq. (4), the integration of which yields the value of ∂Ps

 ⁄ ∂x2.
Solutions of the equations of motion of a suspension can be obtained by the method of the surfaces of equal

flow rates [4]. The transformed equations of motion over the radial coordinate that are written on the stream lines for
the case of a multiphase medium will take the form [1, 2]
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 F1j1 + ρ1F1 ,   k = 2, N1

_____
 ; (10)
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αi
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θ

 Fij1 + ρiF1 ,   i = 2, θ
____

 ,   l = 2, Ni

____
 . (11)

The positions of the surfaces of equal flow rates for individual phases can be found from the system of differential
equations

dy1
k

dx1

 = 
dy1

k−1

dx1

 + 
2H1Zα1V1 (δs)

∆1
k  δ2

k
 − 

y1
k
 − y1

k−1

∆1
k  

d∆1
k

dx1

 ,   k = 2, N1

_____
 ;

dyi
l

dx1

 = 
dyi

l−1

dx1

 + 
2H1ZαiVi (δs)

∆i
l

 δ2
l
 − 

yi
l
 − yi

l−1

∆i
l

 
d∆i

l

dx1

 ,   i = 2, θ
____

 ,   l = 2, Ni

____
 ,

(12)

where ∆i
j = (H2ZαiUi)

j−1 + (H2ZαiUi)
j; Z = H3(x3f − x3in). Since the surfaces of equal flow rates and their numbers for

each component of the multiphase medium are introduced individually, in system (12) the equations for the stream
lines of the dispersion phase and disperse inclusions are written down separately for clarity. The characteristic features
of integration of the system of recurrent equations (10)–(12) and the technique of calculation of the pressure gradient
dPk ⁄ dx1 are given in [1, 2].

The rate of sedimentation of the fractions must be determined from the projection of the equations of motion
of the separated multiphase medium layer to the x2 axis [1, 2]:
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− ρi 
Ui

2

H1H2
 
∂H1

∂x2
 = − 

αi

H2
 
∂P

∂x2
 + (1 − 2δ1

i )  ∑ 

j=1
i≠j

θ

 Fij2 + ρiF2 ,   i = 1, θ
____

 .

The latter system of equations is easily reduced to the form

  ∑ 

j=1
i≠j

θ

 fij (Vi − Vj)
2
 = − 

ρiUi
2

H1H2
 
∂H1

∂x2
 + 

αi

H2
 J (x1, x2) − ρiF2 ,   i = 2, θ

____
 , (13)

where J(x1, x2) = ρF2H2 + ∑ 

i=1

θ

ρiUi
2 

∂H1

H1∂x2
. When Re12 << 1, the interphase interaction force has a linear structure [3];

therefore system (13) can be linearized having replaced the quantity fij(Vi − Vj)
2 on the left-hand side of the equations

by fij(Vi − Vj). The velocity V1 is determined separately with account for the rate of filtration; therefore in solving the

system of algebraic equations (13) it is considered known.
It should be noted that rheological law (3) allows one to consider all the possible variants of the behavior of

the deposited mass. To consider them, we will integrate the sum of equations (5) and (7) subject to boundary condi-
tion (9.2):

c 




H1

H2

 
∂ (U2s

 ⁄ H1)

∂x2





s

 = 
1

H1
2
H3

 ∫ 

x2

δs

H1
2
H2H3ρsF1dx2 + τ1 (δs) − τ . (14)

When for any x2 ≤ δs the inequality below is satisfied

1

H1
2
H3

 ∫ 
x2

δs

H1
2
H2H3ρsF1dx2 + τ1 (δs) > τ , (15)

the sediment will flow as a whole, i.e., in the same way as the power-law fluid with the rheological constants c and
s under the action of a shear stress equal to τs − τ. When inequality (15) is satisfied only in the definite interval
0 < x2 ≤ x2

∗ , the so-called flow core appears in the layer. The part of the sediment layer of thickness x2
∗  = δs − δ∗  ad-

joining the wall will flow with the velocity changing over the cross section, whereas the outer part of the layer of
thickness δ∗  will move as a solid body with the velocity equal to the velocity at the boundary between the layers. If
the sum of the first two terms on the right-hand side of (14) is smaller than τ, the motion of the sediment does not
occur.

We will construct the mass balance equation for the sediment layer; it takes into account the difference be-
tween the rates of deposition of the multiphase suspension fractions. We will consider an integral relation of conser-
vation of the amount of the solid phase in an elementary volume of the sediment for the time ∆t = t − tin (Fig. 1). At
any time t this elementary volume is calculated from the equation

Ω (t) = H3∆x3   ∫ 
x1

x1+∆x1

  δs (x1, t) H1dx1 . (16)

The change in the amount of solid particles in the considered volume is determined by two factors: the flux
of depositing particles Ωflux and the flow of the deposited mass Ωflow in the direction of the x1 axis:
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α2s (Ω (t) − Ω (tin)) = Ωflux + Ωflow . (17)

The area of the upper face of the elementary volume is equal to H3∆x3L; consequently, the number of particles depos-
ited for the time ∆t can be calculated in terms of the integral

Ωflux = H3∆x3 ∫ 
tin

t

LΩV (x1, δs) dt , (18)

where ΩV(x1, δs) = ∑ 

i=2

θ

αiVi(x1, δs) is the flux of solid particles to the wall caused, in the first place, by the filtering

motion of the liquid through the sediment layer and, second, by the difference between the velocities of different
phases in the suspension layer. The length of the arc L is calculated from the equation

L =   ∫ 

x1

x1+∆x1

   √1 + 




H2dδs

H1dx1





2

 H1dx1 . (19)

The change in the number of particles in an elementary volume because of the motion of the sediment is de-
termined by the difference between the inflowing and flowing-out mass for the time interval considered:

Ωflow = H3∆x3 ∫ 
tin

t

   ∫ 
0

δs(x1,t)

  α2sU2s (x1, t) H2dx2dt − H3∆x3 ∫ 
tin

t

       ∫ 
0

δs(x1+∆x1,t)

    α2sU2s (x1 + ∆x1, t) H2dx2dt .

We introduce the notation

Qs =   ∫ 

0

δs(x1,t)

  U2s (x1, t) H2dx2

and simplify the latter relation:

Ωflow = α2sH3∆x3 ∫ 
tin

t

(Qs (x1, t) − Qs (x1 + ∆x1, t)) dt . (20)

Fig. 1. Elementary volume of the sediment.
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For the small interval ∆x1, integrals (16) and (19) can be approximated by the trapezium equation. Further,
after substitution of Eqs. (16), (18), and (20) into Eq. (17), we will divide it by α2sH1∆x1H3∆x3 and perform the lim-
iting transition ∆x1 → 0:

δs (x1, t) − δs (x1, tin) = ∫ 
tin

t √1 + 




H2dδs

H1dx1





2

 
ΩV (x1, δs)

α2s
 dt − ∫ 

tin

t
1

H1
 
∂Qs

∂x1
 dt .

Differentiating the latter relation with respect to t, we obtain the mass balance equation for the sediment layer:

∂δs

∂t
 + 

∂Qs

H1∂x1
 = √1 + 





H2dδs

H1dx1





2

 
1

α2s
  ∑ 

i=2

θ

 αiVi (x1, δs) , (21)

which makes it possible to take into account the difference between the rates of deposition of the fractions in a mul-
tiphase separable medium.

When the rate-induced nonequilibrium state of the phases is insignificant and the development of the sediment
is determined only by the filtration motion of the liquid through the sediment, we may consider that Vi C V1 =
V1s(x1, δs)/α1. Then, provided the condition (H2

 ⁄ H1)2(dδs
 ⁄ dx1)2 << 1 is satisfied, dependence (21) yields the generally

adopted mass balance equation of the sediment for a monodisperse suspension [5]:

dδs

dt
 + 

∂Qs

H1∂x1
 = 

α
α1α2s

 V1s (x1, δs) . (22)

In practice, the regime of filtration is most often implemented with formation of the sediment that is motion-
less relative to the wall. Here, two cases are possible. In some apparatus, for example, in band-type filters or in drum
vacuum filters with the outer working surface, the permeable wall and, consequently, the sediment layer are continu-
ously carried away from the zone of filtration. In this case, the thickness of the sediment is independent of time.
When U2s = W = const, Eqs. (21) and (22) yield respectively the differential equations

dδs

dx1
 = 

H1ΩV

H2 √(α2sW)2 − ΩV
2

 , (23)

dδs

dx1
 = 

H1
H2

 
α

α1α2s
 
V1s (x1, δs)

W
 . (24)

When the particles are accumulated on an immobile wall, the velocity U2s and flow rate Qs are equal to zero.
The thickness of the sediment will change, however, both in time and over the longitudinal coordinate. The depend-
ence of the sediment thickness on the coordinate x1 will manifest itself in the presence of lamination of phases when
some of the fractions settle out before others. Then the mass balance equations of the sediment (21) and (22) will take
on the form

dδs

∂t
 = 

ΩV

α2s
 √1 + 





H2dδs

H1dx1





2

 , (25)

dδs

dt
 = 

α
α1α2s

 V1s (x1, δs) . (26)
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Such a change in the thickness in time will proceed until it attains the level δ∗  which is the maximum thickness of
the sediment layer at which there is no flow. When δs > δ∗ , the layer begins to fall down the wall.

In the case where the layer develops according to one of the equations (23)–(26), the conservation equations
(4)–(6) are transformed into ordinary filtration equations, the solution of which presents no difficulties. Thus, calcula-
tion of the process of filtration with formation of a sediment can be brought to numerical integration of a system of
ordinary differential equations (10)–(12) together with one of the equations (21)–(26). In the case where the sediment
layer develops according to one of the equations (25) and (26), numerical calculations become more involved because
of the time derivative. Then, the following cyclic algorithm can be used:

1) the distribution of the positions of the surfaces of equal flow rates yi
k and the velocity profile Ui

k at the
inlet section are selected;

2) at the initial time instant t = tin there is no sediment, δs = 0;
3) the system of equations (10)–(12) is solved numerically for yi

k(x1) and Ui
k(x1);

4) the filtration rate V1s(x1) is calculated from the determined distribution of the characteristics of the suspen-
sion layer;

5) Eq. (25) or (26) yields the change in the sediment thickness over the surface at the time instant t + ∆t;
6) the values of the sediment layer thickness are smoothed, for example, by the equation δ

_
s(x1) =

[ξδs(x1 − ∆x1) + (1 − ξ)δs(x1) + ξδs(x1 + ∆x1)]/(1 + ξ) and the derivatives dδ
_

s
 ⁄ dx1 are calculated;

7) stages 3–6 are repeated.
In the case of a multiphase or polydisperse medium the number of equations in system (10)–(12) is increased,

which complicates the numerical calculations. Moreover, equations for calculating the effective viscosity and force of
interphase interaction are lacking for such media. Therefore, in order to simplify the problem, average characteristics
of particles are often used, thus replacing the polydisperse composition of the disperse phase by a monodisperse one.
Depending on the importance of the characteristics of particles for a specific process, a mean diameter can be intro-
duced, which is based on different attributes. To calculate the average size, the following equation can be used:

d = 







 ∑ 

i

 σidi
a
  ⁄  ∑ 

i

 σidi
b







1 ⁄ (a−b)

 . (27)

Then, for example, imparting the values 1 and 0, 2 and 0, 3 and 0, and 3 and 2 to the exponents a and b, we obtain
the mean diameter based on the size, surface, mass, and volume-surface attribute, respectively.

To increase the accuracy of approximation (27), it is sometimes advisable to average the characteristics of the
disperse phase not over the entire spectrum of particles, but rather over a certain number of its fractions, each of
which is characterized by its own equivalent size and by other macrocharacteristics. The use of this way of simplifi-
cation makes it possible to consider heterogeneous media as two-phase or three-phase ones. For example, application
of filtering auxiliary substances in separation of a finely dispersed suspension is well known. For the particles of the
auxiliary substance and dispersed phase of the suspension one may introduce individual averaged diameters of the par-
ticles, using for the purpose Eq. (27). The process of separation is calculated using as a basis the knowledge of the
hydrodynamics of a three-phase system with particles of two species.

As another example, we will consider the case of a suspension containing coarsely dispersed particles in a
suspension of particles of colloidal dispersivity. A mixture of a colloidal fraction and a continuous medium can be
considered as a certain homogeneous medium into which the particles of the coarse fractions were placed. Since a sus-
pension of highly dispersed particles is structurized and, therefore is a Newtonian one, we may conclude that in this
case the model of a suspension of particles in a non-Newtonian medium is applicable [6]. If the mean diameter of
coarsely dispersed particles is determined according to (27), we arrive at the case of a two-phase medium with a non-
Newtonian dispersion phase.

The rheology and force of interaction between the phases for two-phase and three-phase (bidisperse) media
have been studied rather adequately. Some of the results and citings of other publications can be found, for example,
in [6–10].
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Numerical calculations are performed after the flow region has been selected and the Lame′  coefficients deter-
mined. Specific definition of the resulting equations and computational relations does not present difficulties once the
type of filtering apparatus has been selected. Figure 2 presents some numerical calculations of the process of filtration
of a suspension during its flow over an inclined permeable plane. The angle of inclination to the horizontal line is
60o. The thickness of the sediment was calculated from Eq. (26). It was assumed that the influence of the excess pres-
sure ∆P = P − Pv on the rate of filtration dominates over the influence of the mass force. As is seen from Fig. 2a,
the thickness of the sediment increases monotonically with time. The intensity of this increase is directly proportional
to the pressure difference (curves 1 and 2), and the concentration of the suspension (curves 1 and 3) is inversely pro-
portional to the carrying-phase viscosity (curves 1 and 4). In all cases, the intensity of the increase decreases as a re-
sult of the decrease in the rate of filtration. Figure 2b shows the effect of the same parameters on a value of the
filtration rate. The rate of filtration is decreased with increase in the medium viscosity (curves 1 and 4) and concen-
tration of particles (curves 1 and 3), whereas it increases with the pressure difference (curves 1 and 2).

This work was carried out with financial support from the SMP-NEFTEGAZ Joint Stock Company
(Al’met’evsk).

NOTATION

c, coefficient of the consistency of a deposited mass, kg⋅secs−2/m; d, mean diameter of a particle, m; di, di-

ameter of a particle of the ith fraction, m; e12, tensor of deformation rates; f12 and f12
s , coefficients of the force of

interphase interaction in a suspension and a contact disperse medium; F(F1, F2), vector of the acceleration of mass

forces (and its components in the direction of the x1 and x2 axes), m/sec2; Fij, Fijk (k = 1, 2, 3), vector of the force

of interphase interaction and its projections onto the corresponding xk axes, kg/(m2⋅sec2); F12
s , vector of the force of

interphase interaction in a contact disperse medium, kg/(m2⋅sec2); h, thickness of the mixture film, m; Hi, Lame′  co-

efficients; I2, quadratic invariant of the tensor of deformation rates; K, coefficient of the force of viscous friction; L,

length of the arc, m; m, coefficient of the consistency of a heterogeneous medium, kg⋅secn−2/m; n, s, coefficients of
nonlinearity; Ni, number of the surfaces of equal flow rates for the ith phase; Ps, Pa, Pv, and P, pressure in the

pores of the sediment, atmospheric pressure, pressure behind a porous wall, and pressure in the liquid film, respec-

tively, N/m2; Qs, flux of the sediment, m2/sec; t, time, sec; Ui, Vi, velocity components of the ith phase of a sus-

pension in the direction of the x1 and x2 axes, m/sec; Vis(Uis, Vis), vector of the velocity of a flowing sediment (and

its components in the direction of the x1 and x2 axes), m/sec; W, velocity of the motion of a surface, m/sec; Vfil,

rate of filtration, m/sec; xi, orthogonal coordinates; αi, volumetric concentration of the ith phase; α = ∑ 

i=2

θ

αi; α1s, po-

Fig. 2. Changes in the thickness of the sediment layer (a) and rates of filtra-
tion in time (b): 1) ∆P = 30,000 N/m2, µ1 = 0.01 Pa⋅sec, and α2 = 0.01; 2)
7500, 0.01, and 0.01; 3) 30,000, 0.01, and 0.11; 4) 30,000, 0.05, and 0.01.
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rosity of the sediment (α1s = 1 − α2s); δs, sediment thickness, m; δ1
k, delta-function; µ1, velocity of the carrying

phase of the suspension, Pa⋅sec; θ, number of phases; ρi
0, density of the ith phase (ρi = αiρi

0, ρis = αisρi
0, ρs =

ρ1s + ρ2s, ρ = ∑ 

i=1

θ

ρi, kg/m3; σi, number of particles of the ith fraction per unit volume; τ, τ1, and τ3, limiting shear

stress and shear tensor for suspension and sediment layers, N/m2; ω1i, relative velocity of the motion of phases,

m/sec; ξ, smoothing coefficient; Ω, Ωflux, and Ωflow, elementary volume, its changes because of the flux of deposit-

ing particles, and flow of the sediment, m3; ΩV, velocity of a flux of particles, m/sec; Re12 = ρ1
0dω1i

 ⁄ µ1, Reynolds

numbers. Subscripts: a, atmospheric; v, behind a permeable wall (vacuum); in, initial value; f, final value; fil, filtra-
tion (at the sediment–medium boundary); p, sediment; V, flow velocity; i, number of a phase or fraction; k and l,
numbers of the surfaces of equal flow rates for a continuous and a dispersed phase; s, sediment. Superscripts: *,
characteristic value; s, sediment.
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